• Discovery: Known to the ancients and visible to the naked eye
  • Named for: Messenger of the Roman gods
  • Diameter: 3,031 miles (4,878 km)
  • Orbit: 88 Earth days
  • Day: 58.6 Earth days

Mercury is the closest planet to the sun. As such, it circles the sun faster than all the other planets, which is why Romans named it after the swift-footed messenger god Mercury.

Mercury was known since at least Sumerian times roughly 5,000 years ago, where it was often associated with Nabu, the god of writing. Mercury was also given separate names for its appearance as both a morning star and as an evening star. Greek astronomers knew, however, that the two names referred to the same body. Heraclitus believed that both Mercury and Venus orbited the sun, not Earth. [Latest Photos: Mercury Seen by NASA’s Messenger Prob

Mercury’s physical characteristics

Because the planet is so close to the sun, Mercury’s surface temperature can reach a scorching 840 degrees Fahrenheit (450 degrees Celsius). However, since this world doesn’t have a real atmosphere to entrap any heat, at night temperatures can plummet to minus 275 F (minus 170 C), a temperature swing of more than 1,100 degrees F (600 degree C), the greatest in the solar system.

Mercury is the smallest planet — it is only slightly larger than Earth’s moon. Since it has no significant atmosphere to stop impacts, the planet is pockmarked with craters. About 4 billion years ago, an asteroid roughly 60 miles (100 kilometers) wide struck Mercury with an impact equal to 1 trillion 1-megaton bombs, creating a vast impact crater roughly 960 miles (1,550 km) wide. Known as the Caloris Basin, this crater could hold the entire state of Texas. Another large impact may have helped create the planet’s odd spin.

As close to the sun as Mercury is, in 2012, NASA’s Messenger spacecraft discovered water ice in the craters around its north pole, where regions may be permanently shaded from the heat of the sun. The southern pole may also contain icy pockets, but thus far Messenger’s orbit has not allowed scientists to probe the area. Comets or meteorites may have delivered ice there, or water vapor may have outgassed from the planet’s interior and frozen out at the poles. [Related: First Photos of Water Ice on Mercury Captured by NASA Spacecraft]

Mercury apparently shrank as much as 4.4 miles (7 km) as it cooled in the billions of years after its birth. This caused its surface to crumple, creating lobe-shaped scarps or cliffs, some hundreds of miles long and soaring up to a mile high. At the same time, the surface was constantly reshaped by volcanic activity in the planet’s past.

Mercury is the second densest planet after Earth, with a huge metallic core roughly 2,200 to 2,400 miles (3,600 to 3,800 km) wide, or about 75 percent of the planet’s diameter. In comparison, Mercury’s outer shell is only 300 to 400 miles (500 to 600 km) thick. The combination of its massive core and abundance of volatile elements has left scientists puzzled for years.

A completely unexpected discovery Mariner 10 made was that Mercury possessed a magnetic field. Planets theoretically generate magnetic fields only if they spin quickly and possess a molten core. But Mercury takes 59 days to rotate and is so small — just roughly one-third Earth’s size — that its core should have cooled off long ago. The discovery in 2007 by Earth-based radar observations that Mercury’s core may still be molten could help explain its magnetism, though the solar wind may play a role in dampening the planet’s magnetic field

Although Mercury’s magnetic field is just 1 percent the strength of Earth’s, it is very active. The magnetic field in the solar wind — the charged particles streaming off the sun — periodically touches upon Mercury’s field, creating powerful magnetic tornadoes that channel the fast, hot plasma of the solar wind down to the planet’s surface.

Instead of a substantial atmosphere, Mercury possesses an ultra-thin “exosphere” made up of atoms blasted off its surface by solar radiation, the solar wind and micrometeoroid impacts. These quickly escape into space, forming a tail of particles.

Mercury’s orbital characteristics

Mercury speeds around the sun every 88 Earth days, traveling through space at nearly 112,000 mph (180,000 kph), faster than any other planet. Its oval-shaped orbit is highly elliptical, taking Mercury as close as 29 million miles (47 million km) and as far as 43 million miles (70 million km) from the sun. If one could stand on Mercury when it is nearest to the sun, it would appear more than three times as large as it does when viewed from Earth.

Oddly, due to Mercury’s highly elliptical orbit and the 59 Earth-days or so it takes to rotate on its axis, when on the scorching surface of the planet, the sun appears to rise briefly, set, and rise again before it travels westward across the sky. At sunset, the sun appears to set, rise again briefly, and then set again.

Composition & structure

Atmospheric composition (by volume): 

No atmosphere: Mercury possesses an exosphere containing 42 percent oxygen, 29 percent sodium, 22 percent hydrogen, 6 percent helium, 0.5 percent potassium, with possible trace amounts of argon, carbon dioxide, water, nitrogen, xenon, krypton and neon.

Magnetic field: Roughly 1 percent the strength of Earth’s.

Internal structure: Iron core roughly 2,200 to 2,400 miles (3,600 to 3,800 km) wide. Outer silicate shell about 300 to 400 miles (500 to 600 km) thick. [Inside Planet Mercury (Infographic)]

Orbit & rotation

Average distance from the sun: 35,983,095 miles (57,909,175 km). By comparison: 0.38 Earth’s distance from the Sun.

Perihelion (closest approach to sun): 28,580,000 miles (46,000,000 km). By comparison: 0.313 times that of Earth

Aphelion (farthest distance from sun): 43,380,000 miles (69,820,000 km). By comparison: 0.459 times that of Earth

Length of Day: 58.646 Earth-days

Research & exploration

The first spacecraft to visit Mercury was Mariner 10, which imaged about 45 percent of the surface and detected its magnetic field. NASA’s MESSENGER orbiter is the second spacecraft to visit Mercury. When it arrived in March 2011, MESSENGER became the first spacecraft to orbit Mercury, where it continues to study the planet. [First Photos of Mercury from Orbit]

In 2012, scientists discovered a group of meteorites in Morocco that they think could have originated from the planet Mercury. If so, it would make the rocky planet a member of a very select club with samples available on Earth; only the moon, Mars and the asteroid belt have verified rocks.

Additional reporting by Nola Taylor Redd, contributor


Em “”

Please Enter Your Facebook App ID. Required for FB Comments. Click here for FB Comments Settings page

(Lida 85 vezes, 1 visitas hoje)
Optimization WordPress Plugins & Solutions by W3 EDGE